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ABSTRACT 

The genus is determined for spaces of the homotopy type of a CW complex with 
one cell each in dimensions 0, 2n and 4n (and no other cells), such spaces providing 
the only cases of spaces with two non-trivial cells such that the homotopy class of 
the attaching map for the top cell is of infinite order and the genus of the space 
is non-trivial. The genus is characterised completely by two well understood in- 
variants: the Hopfinvariant of the attaching map of the 4n-cell and the genus of 
the suspension of the space. The algebraic tools are developed for the investiga- 
tion of the v-cancellation behaviour of these spaces and a cancellation theorem is 
proved: the homotopy type of a finite wedge of such spaces determines the homo- 
topy type of each of the summands as long as the attaching maps of the 4n cells 
all represent homotopy classes of infinite order. Comparing this result to known 
results about finite co-H-spaces shows that the Hopf invariant is the single obstruc- 
tion to such spaces admitting a co-H structure. 

One approach to an understanding of the homotopy theory of topological spaces 

is to try to decompose them with respect to the one-point union (or v-product) 

in to  spaces which are not  themselves decomposable ,  in the hope that  the homo-  

topy properties of these indecomposable spaces are easier to deal with and that the 

homotopy  properties of  the original  space can be recovered from them. For this 

p rogramme to have any prospect of success, it would be necessary either to know 

that  the v-decomposi t ion  of a given space is un ique  up to h o m o t o p y - a n d ,  of 

course, up to the order of  the c o m p o n e n t s - o r ,  at the very least, to have control  

over the indeterminacy.  Restricting a t ten t ion  to topological  spaces of  the homo-  

topy type of  CW-complexes of finite type (which we simply call spaces), the cen- 

tral  quest ions are: 

(i) Given spaces A,  B and C with A v C and B v C homotopically equivalent, 

what can be said about A and B? 

Received August 21, 1990 

361 



362 I. BOKOR Isr. J. Math. 

(ii) Given spaces A and B with A v . . . v A and B v . . • v B (with the same finite 

number o f  summands in each case) homotopically equivalent, what can be 

said about A and B? 

In general A and B need not be homotopically equivalent-that is to say we can- 

not always cancel. But in all the known examples of non-cancellation, the spaces 

A and B were almost homotopically equivalent in the sense that at each prime p 

their p-localisations A(p) and B(p) were homotopically equivalent. Spaces with 

this property are said to be o f  the same genus. The question then arises naturally: 

Do genus and non-cancellation always go hand in hand? 

Indeed, they often do. Zabrodsky [Z] showed that if attention is restricted to 

finite H-spaces, then every non-trivial genus provides examples of non-cancella- 

tion phenomena with respect to cartesian product: 

PROPOSITION. Let A and B be finite H-spaces o f  the same genus. Then there are 

a finite H-space C and a positive integer r such that (i) A x C and B x C are homo- 

topically equivalent and (ii) A r and B r are homotopically equivalent. (Here A r 

denotes cartesian product o f  r copies o f  A.  ) 

Wilkerson [CW] established a converse and claimed the corresponding result for 

f inite co-H-spaces and v-product: 

PROPOSITION. Let A and B be finite H-spaces (resp. co-H-spaces). Then the 

following are equivalent: 

(i) A and B are o f  the same genus. 

(ii) A × C and B × C (resp. A v C and B v C) are homotopically equivalent, 

for  some finite H-space (resp. co-H-space) C. 

(iii) A r and B r are homotopically equivalent for  some positive integer r, where 

A r denotes the cartesian (resp. v-) product o f  r copies o f  A. 

In other words, genus and non-cancellation are inseparable in the cases of finite 

H-spaces and finite co-H-spaces. 

What if the spaces are not required to be H-spaces or co-H-spaces? We inves- 

tigate this question for finite simply connected CW-complexes with cells in dimen- 

sions 0, 2n, and 4n. 

THEOREM [M]. The following statements are equivalent for  spaces consisting 

o f  precisely three cells, one each in dimensions O, n and m with 1 < n < m - 1, as 

long as either the attaching map o f  the m-cell represents a suspension element in 

7rm-l (S") or both the order in ~m-I (S") of  this attaching map and n are odd. 
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(i) The spaces are of the same genus. 

(ii) The attaching maps of the top cells generate the same subgroup of 

7rm_l ( S~). 

(iii) The wedges of the spaces with S ~ v S m are homotopically equivalent. 

This paper continues the investigation of spaces with three cells, but we now as- 

sume the attaching map of the cell in the top dimension to be of infinite order. The 

only infinite homotopy groups of spheres are lr~ (S ") and 7r4,_1 (S 2"). Since the 

mapping cones of maps S ~ ~ S ~ (n > 1) are simply connected Moore spaces, their 

homology groups determine them uniquely up to homotopy equivalence. Hence the 

only case left to consider is when the cells are arrayed in dimensions 0, 2n and 4n 

(with n > 0). This case provides a striking contrast to the theorem above, for while 

the genus can still be algebraically characterised in a manner which extends (ii), the 

geometrical condition (iii) no longer characterises the genus: in general (i) does not 

imply (iii) in the above theorem. Specifically, 

THEOREM A. Given spaces with precisely three cells, one each in dimensions 

O, 2n and 4n, they are of the same genus if and only if  

(i) the attaching map of their 4n-cells generate the same subgroup of 

7r4,-1 (S 2n) modulo torsion and 

(ii) the suspensions of these maps generate the same subgroup of 7r4, (S 2n+l ). 

We shall derive this theorem as a consequence of the characterisation of the ge- 

nus of S 2n ~)f e 4n = Cf in terms of two invariants: the genus of  the suspension 

and the Hopfinvariant o f f  (Observe that while it is obvious that the genus of  the 

suspension is genus-invariant, it is not immediately obvious that the Hopf  invari- 

ant is.) 

It is worth noting that this theorem does not, in fact, require any restriction on 

the order of  the attaching map of  the cell in the top dimension, although, of 

course, our main interest is when this order is infinite. 

THEOREM B. Given spaces with precisely three cells, one each in dimensions 

O, 2n and 4n, such that the attaching maps of the 4n-cells are of infinite order, they 

become homotopically equivalent by wedging with the wedge of a 2n-sphere and 

a 4n-sphere if and only if  they are already homotopically equivalent themselves. 

This already appears in [M]. The proof  given there applies a form of Hilton's 

"matrix calculus" [H2]. But the question is left open: What can be said about two 

three-cell spaces knowing that the wedge of  the first with itself is homotopically 

equivalent to the wedge of  the second with itself? 
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Our answer to this question is 

THEOREM C. Take two spaces with precisely three cells, one each in dimensions 

O, 2n and 4n, such that the attaching maps of the 4n-cells are of  infinite order. The 
wedge of  finitely many copies of  one is homotopically equivalent to the wedge of  
the same number of  copies of  t~e other if  and only if  the spaces are themselves 
homotopically equivalent. 

We derive Theorem B and Theorem C as corollaries to the following v-factor- 

isation theorem, which we prove by extending and applying the "matrix calculus". 

THEOREM D. Take spaces with precisely three cells, one each in dimensions 

O, 2n and 4n. Two finite wedges of  such spaces are homotopically equivalent if  and 

only if  the number of  factors with the attaching map of  the 4n-cell o f  infinite or- 
der is the same in both wedges, these factors are pairwise homotopically equiva- 
lent and the wedges of  the remaining factors are homotopically equivalent. 

The rest of  the paper is devoted to the proofs of  Theorem A (Corollary 2.4 be- 

low) and Theorem D (Theorem 4.13 below). Elements of Hopf  invariant 1 arise 

only when n = 1, 2 or 4 [A] and occasionally create the need for slightly special 

arguments in those cases. The characterisation of  the genus of  Cf for f E 

7r4n_ l (S 2n) is illustrated by the explicit computation of the genera of the complex, 

the quaternionic and the Cayley projective planes. 

The author would like to thank Peter Hilton for his advice and encouragement 

with this paper. 

1. Homotopy properties of S 2n Uf e 4n 

The CW-complexes we consider are of a particularly simple form: they are the 

mapping cones Cf of  maps f :  V S  4~-1 ~ V S  2n. By the Blakers-Massey Theorem 

[H 1], maps between such mapping cones Cf and Cg arise from homotopy com- 

mutative diagrams 

V S 4n-I f ) V S 2n 

V S 4n-1 ) V S 2n 
g 

We begin the algebraic analysis of  such a commutative d i ag ram-which  we re- 

fer to as our "fundamental d i a g r a m " -  by considering the special case in which 

each of the bouquet of spheres consists of a single sphere. 

Then the horizontal maps are classified by ~4n-1 (S 2n) and the vertical ones by 
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7r4n_ l (S  4n-I ) and 7r2. (S  2n) respectively. These last groups operate on 71"4n_ 1 (S  2n) 

by the homotopy operation of composition. The other homotopy operations which 

play a r61e are suspension and the Whitehead product. We take the opportunity 

to summarise their properties and to fix notation. 

The features of these operations essential for our investigations are that com- 

pos i t i on -  which we denote by o -  is always right-additive (additive in the second 

variable) but only sometimes left-additive, whereas the Whitehead product [ , ] : 

7ft(X ) X ~ru(X ) ~ 7rt+u_l(X ) is natural in maps X--, Y, bi-additive for t ,u >_ 2, 

graded commutative and its image lies in the kernel of the suspension morph i sm-  

which we denote by ~. The next theorem is a formal statement of  these facts. 

Other, more special properties will be introduced as needed. 

THEOREM 1.1 [GWW]. Let ~,/3 ~ 7rt(X), 7,6 E 7ru(X) and c ,~E  7rr(St), Let 

~7 be a homotopy class o f  maps X --, Y. Then 

(i) u o ( c  + ~') =c~o~ + c~oL 

(ii) If, in addition, either X is an H-space or ~ is a suspension element, then 

(iii) 7/o [~ , -y]  = [7 oo~, ~ o-r]. 
(iv) [c¢ +/3, 3' + 6] = [c~,3'] + [c~,6] + [/3,q/] + [/3,6] i f t ,  u >_ 2. 

(v) [a,3,] = ( -1 ) 'u [3 , , a ] .  

(vi) ~[c~,3,] = 0. • 

The Hilton-Milnor Formula describes the failure of the composition o :Trt (X) x 

7rr(S t) ~ 7rr(X) to be left-additive. 

THEOREM 1.2 [GWW] (Hilton-Milnor Formula). Let u,/3 E 7rt(X) and e E 

rr (S t ) .  Then 

( a + / 3 )  o e = o ~ o E + / 3 o e +  ~]wi(u , /3 )  ohi(e)  
i E N  

where each wi (a,/3) is an iterated Whitehead product with at least two factors. I f  

wi(o~,/3) has s + 1 factors, then hi is a homomorphism 7rr(S t) ~ 7r,.(S ¢~+l)t-~) and 

is called the "i-th Hi l ton-Hopf  invariant". • 

We are now ready to determine the operation of 7fzn(S 2n) on  7f4n_ 1 ( s 2 n ) .  

Given 0~,/3 E 7fm(S m) and 3' E 7f2m_l(S m) (m ~ 2), it follows from the Hil ton- 

Milnor formula that 

(~ +/3)o~,  = (o~ o r )  + (/3 o ~/) + [o~,/3] o ho(~,) 

since the image of the Hi l ton-Hopf  invariant hi lies in ~r2m-i (S ~') and ri >- 2m, so 

that 7r2m_~ (S r~) = 0 whenever i > 0. In fact, ho agrees with the classical H o p f i n -  
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variant, which we denote  by H and whose propert ies  are summar i sed  in the next 

theorem.  

Tm~OREM 1.3 [GWW]. H :  7rz,,_a ( S " )  + Z is a group homomorphism with the 

following properties. Take o~ E 7r2m_ 1 ( s2m), ~o E 7rm( Sm), t the homotopy class o f  

ids,, : S m -~ S m and ~b E ~rzm_a ($2m-I ) .  Then 

(i) H(~ooc~) = (deg~p)2H(o0.  

(ii) H ( u  o 4~) = (deg ~k)H(u) .  

(iii) o~ E 2 ( r z , , _ 2 ( S m - l ) )  i f  and only i f  H(ot)  = O. 

(iv) I f  m = 2n - 1, then i m ( H )  = 10}. 

then i m ( H )  := f Z i f n  E [1,2,4}, (v) I f m  2n, 
L 2Z otherwise. 

(vi) n ( [ t , t ] )  = 2. • 

Only the h o m o t o p y  groups  71"3(82), 71-7(8 4) and 7rls(S 8) contain  elements of  

H o p f  invariant  1. In each of  these cases the corresponding H o p f  m a p  ~ : S 2m-1 

S m (m = 2,4,8) represents one such h o m o t o p y  class. These play an impor tan t  r61e 

below. 

THEOREM 1.4 [GWW].  

t "  
= J Z ~  ® T m  i f  m is even 

7r2m_l ( S m ) 
Tm i f  m is odd 

where ~ is o f  infinite order and Tin, the torsion subgroup o f  "/l'2m_ 1 ( s m ) ,  is 

~( TF2m_z( Sm-l )). For m :/: 2, 4 or 8, ~ may be taken to be the Whitehead product 

[L, L]. Otherwise ~ may be taken to be the corresponding H o p f  map 7. Moreover 

Tm = Z / r Z  with r = 1,12,120 respectively, for  m = 2,4,8. In these cases, Tm is gen- 

erated by the suspension, o~, o f  a generator o f  7r4m_2(S 2m l),  and [L, ~] = 2~ + ~. 

Finally, the suspension morphism E : 7r4._ 1 (S 2") --, 7r4. (S 2~+1 ) is surjective with 

kernel generated by It, t ] ,  so that 7F4n(S 2n+l) ~ T2n unless n = 1,2,4 when 

7/'4n (S  2n+l ) = Z / 2 r Z  with r as above. • 

Having  chosen once and for  all a canonical  generator  ~ for  the free componen t  

of  7r4n-i ($2"),  we may  freely speak of  the " tors ion c o m p o n e n t "  of  an element of  

~r4.-i (S 2") or,  more  generally, o f  7r4._t ( V S 2 " ) .  

We now int roduce a more  convenient  way of  represent ing the elements  of  

71"4 n _  1 ( s 2 n ) .  
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It follows from Theorem 1.4 that E(a~ + x~) = (a - 2x)r~(~) for n = 1, 2 or 4. 

Hence, in these cases, 

2 x ( f ) ~ ( n )  = ar-(~7) - E ( f )  

where we have written x ( f )  for x to emphasise its dependence on f .  

T h u s f  is determined up to homotopy by the pair (H( f ) , r~( f ) ) ,  since this pair 

uniquely determines H ( f ) ~  + x(f)~o. Of course f also determines the pair 

( H ( f ) , Z ( f ) ) .  
If n 4: 1, 2 or 4, then each function f :  S 4"-1 ~ S 2n is the form a~ + ~', where 

= It, L] and where ~'is now an element of the finite abelian group T2,. But then 

H ( f )  = a(H[t,t]) = 2a, E(~) = 0 and the suspension morphism restricts to an 

isomorphism T2, ~ 7r4,(szn+l), so that E ( f )  = E(~'). Thus the pair ( H ( f ) , r . ( f ) )  

once again determines f up to homotopy. 

These considerations allow us to represent any function f :  S 4~-1 --, S 2" (without 

restriction on n) as the pair ( H ( f ) , E ( f ) ) .  Moreover, this representation is natu- 

ral in the sense that it is compatible with the operations of  7r4._1 (S 4"-1) and 

"ff2n(S 2n) o n  7 r 4 n _ l ( S 2 n ) .  

THEOREM 1.5. For maps ~ : S 4n- I  --~ S 4 n - l ,  f :  S 4~-1 ~ S 2n and ~ : S z" ~ S 2n, 

we have 

P R O O F .  

( H ( f o  ¢ ) , ~ ( f o  •)) = (deg(~b)H(f) ,  deg(~b)X(f)), 

(H(,p o f ) , E ( ~  of) )  = (deg(~,)2H(f) ,  deg(~,)E(f)) .  

The equalities are immediate consequences of  Theorems 1.1 and 1.3. 

The last theorem also provides purely algebraic conditions equivalent to the 

mapping cones Cf and Cg o f f ,  g: S 4n 1 .~ $2, being homotopically equivalent. 

COROLLARY 1.6. The mapping cones of  f,  g : S 4n-l -* S 2n are homotopically 

equivalent if and only i f  

H(g)  = +_H(f) and E(g) = _+)2(f). 

PROOF. A self-map of S m (m >_ 1) is a homotopy equivalence if and only if its 

degree is + 1. • 

In particular, when discussing the homotopy properties of the mapping cone 

Cf, we may assume that the Hopf  invariant o f f  is non-negative. 
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2. Localisation and the genus of  S zn Uf e 4n 

We denote by X(p) the p-localisation of  the space X, by e : X ~ X<p) the 

p-localising map and by f(p) the p-localisation of  the map f in the sense of  [BK], 

[HMR] or [HP]. 

The spaces we study in this paper are mapping cones of  maps f :  S 4n-I --* S 2n. 

Given f ,  g : S 4n-I ~ s2n ,  maps I C ( f )  ) (p) ~ (C(g)  ) (p) correspond to commutat ive 

diagrams 

f(p) ( s4n- - l ) (p )  ) (S2n) (p)  

g(p) 

The horizontal arrows are classified up to homotopy by [(S 4~-~ )(p), (S2~)(p)] ~ 

[S 4n-l, S 2n ] (p), which is, by Theorem 1.4, 7r4n-1 (SZn)(p) ~ ~r4,-i (S 2~) @ Z(p). 

Thus (a t  + f ) (p) is  (a(~p) + f(p)). 

Similarly the vertical arrows are classified up to homotopy  by 7m(Sm)(p) 
Z(p). Hence we may write ~b' as; r/s and ¢ '  as t /u with s and u coprime to p. Now 

[I ~'¢p)I1, the order of  ~'(p), is a power of  p,  say II ~(p)11 = p/.  Let d = U +1 i f p  = 2 

and n = 2,4. Otherwise let d := p~. Then there are integers v and w such that 

vsu + wd = 1. Take self maps p of (s4n-l)(p) and o of (SZ")(p) classified by vsu 

and (vsu) z respectively. Then, by Theorem 1.5, o o g ( p )  = g ( p )  o o since vsu - 1 

(mod I[ ~'(p)[I). Moreover, O and ~r are homotopy equivalences--their homotopy in- 

verses are classified by 1/(vsu):' and 1/vsu respectively. Hence we may replace ~b' 

by ff := o ° ~ '  and ~o' by ¢ := o., ~o' in the diagram above. Furthermore, since they 

are classified by integers, 7/and ~, are the localisations of  self-maps of S 4"-1 and 

S 2", namely of  maps of  degree vru and vst respectively. 

These considerations mean that we may carry out our "localised" computations 

in the "global" setting. The next lemma is a formal restatement of  this fact. 

LEMMA 2.1. The mapping ,:ones o f  f ,  g : S  4n-1 --* S zn are p-equivalent i f  and 

only i f  there is a homotopy commutative diagram 

s4n-1  f ) S 2n 

1 
S 4n-1 ~ S 2n 

g 

with both deg(7/) and deg(~ '  coprime to p. In other words, Cf and Cg are 

p-equivalent i f  and only i f  there are integers k and l coprime to p such that 

lH(g)  = k 2 H ( f )  and IT(g) = k X ( f ) .  • 
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We can now classify the mapping cones of  maps f :  S 4n-I -'~ S 2n into their re- 

spective genera. 

THEOREM 2.2 (Classification Theorem). The mapping cones Cf and Cg of  the 

maps f, g : S 4"-1 ~ S z" are of  the same genus if  and only i f  

(i) the Hopf  invariants of  f and g agree up to sign, and 

(ii) their suspensions are of  the same genus. 

PROOF. Suppose first that Cf and Cg are of  the same genus, and let p be a 

prime number.  Then by assumption (Cy)~p) = (Cg)lp). Hence, by Lemma 2.1, 

there are maps ff : S 4"-1 ~ S 4"-1 and so : S 2" --. S 2" of  degrees l and k respectively, 

both coprime to p ,  such that 

( lH(g) , l~(g))  = (H(go ~b),~(go 6 ) ) =  (H(so o f) ,~(so of))  

= ( k 2 H ( f ) , k E ( f ) ) .  

It follows immediately that pr divides H ( f )  if and only i f p  r divides H(g)  and 

that ZCf = C~T) and ECg = C,~g) are p-equivalent.  This being true for every 

prime p,  it follows (a) that H ( f )  and H(g)  have the same prime factorisation, so 

that H(g)  = + H ( f ) ,  and (b) that ECT and ECg are of  the same genus. 

By the remark after Corollary 1.6 we may suppose for the converse that 

H ( f )  = H(g) .  

Now ECf and ECg are of  the same genus if and only if E ( f )  and E(g) generate 

the same subgroup of 7r4, (S 2"+1) [M]. Thus there is an integer k coprime to II TI[, 

the order of  the torsion subgroup T of  7r4,_l(SZ'),  such that ECf = k.~Cg. 
Choosing self-maps ,p of  S 2" and ~ of S 4"-1 of degrees k and k 2 respectively, we 

have 

so o ( n ( f ) , X ( f ) )  = ( k2H ( f ) , k  E( f ) )  = ( kZH (g),k2E(g)) = ( H (g),E(g)) o ~/. 

Hence Cf and Cg are p-equivalent for every prime p which divides the order 

of  7r4,($2"). If, on the other hand, the prime p does not divide ~ra,(SZ'), then 

(x(f))~p) = (x(g))~p) = 0 so that Cf and Cg p-localise to the same space. 

Thus Cf  and Cg a r e  of  the same genus. • 

As a corollary we have Theorem A from the Introduction. 

COROLLARY 2.4. The mapping cones Cf and Cg of f ,  g : S 4"-1 ---, S 2" are of  the 

same genus if  and only if 

(i) f and g generate the same subgroup o f  7r4,-i (S 2") modulo torsion and 

(ii) I ] ( f )  and r.(g) generate the same subgroup of  7r4n (S 2n+l ). 

PROOF. Note that (i) is equivalent here to H(g)  = +_H(f). • 
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3. Examples 

As an application of  the Classification Theorem, we use Theorems 1.4 and 2.2 

above to compute explicitly the genera of  the complex projective plane CP(2),  the 

quaternionic projective plane HP(2)  and the Cayley "projective plane" OP(2) .  

They are the mapping cones C~ of the respective H o p f  maps n : S 4n-J --' S 2n, n -- 

1, 2 and 4. In each case the torsion subgroup T of  7r4n-I (S 2") is cyclic generated 

by, say, t0 of  order t and ~-4, (S 2n+1) is finite cyclic of  order 2t. The kernel of  the 

suspension morphism is generated by [L,t] = 27 + w, the Whitehead square of  the 

identity map id : S 2n ~ S 2n. 

Moreover,  each n has H o p f  invariant 1 and it follows that ( - 1 )  o n = n + ~0. 

Hence the mapping cone of an + xco is homotopy  equivalent to that of  an + yo~ 

where x + y -- a (rood t) .  Since i' = 1, 12 or 120 according as n = 1, 2 or 4, we may 

restrict attention in considering spaces of  the genus of CP(2),  HP(2)  or OP(2) to 

mapping cones of maps of the form 7/+ 2k~o with k = 0 . . . . .  5 in the case of HP(2)  

and k = 0 . . . . .  59 in the case of  OP(2) .  

The Case n = 1. Since 7r3(S 2) ~- Z is torsion-free, there is only one homotopy  

class of  maps f :  S 3 ~ S 2 with I-Iopf invariant 1, so that G(CP(2))  = {C,] .  

The Case n = 2. The relevant homotopy  group is 71"7 (S 4) -~ Z (~ Z/12Z. There 

are six distinct homotopy  classes of  mapping cones Cf with H ( f )  = 1, namely 

those of  {7 + 2ko~lk = 0,1,2,3,4,5 I. Their suspensions are the mapping cones 

E(n), 21E(n),  17E(r/), 13r.(n), 9r.(n), and 5E(n) respectively. These are of  the 

same genus if and only if their attaching maps generate the same subgroup of  

Z/24ZE(n ) .  The six maps fall into two classes, namely those with k E {0,2,3,5] 

and those with k E 11,4}, each class determining a complete genus. Thus 

G(HP(2) )  = [ C,, C,+4,~, Cr/+6¢o, Cr/+lOw]. The other genus of mapping cones Cy 

w i t h f E  7r7(S 4) and H ( f )  = 1 is [C~+z~,C,+8~]. 

The Case n = 4. The relevant homotopy  group is 7r15(S 8) = Z G Z/120Z, and 

there are 60 distinct homotopy  types of  mapping cones of  maps f :  S 15 ~ S 8 with 

the attaching map of  H o p f  inva:riant 1. There are four genera, with 32, 16, 8 and 

4 distinct homotopy types respectively. The Cayley projective plane is in the largest 

genus, namely, 

C,+kw E G(OP(2))  if and only if k = 2r with 

r E [0,2, 3,5,6,8,11,12,15,17,18,19,20,21,23,26,27, 

30,32,33,35,36,38,42,45,47,48,50,51,53,56,57 }. 

We spare the reader the lists of  the other genera and offer in their stead an ob- 

servation about  the genera in the three cases just considered. 
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The binary expansion of  the number of homotopy types of mapping cones Cf 

with H ( f )  = 1 provides the partition of  the homotopy types into genera: n = 1: 

There is only one homotopy type. n = 2: The 6 = 1102 homotopy types fall into 

2 genera, one with 4 homotopy types, the other with 2. n = 4: The 60 = 1111002 

fall into 4 genera, one with 32 homotopy types, one with 16, one with 8 and the 

last with 4. 

4. Cancellation properties of S 2n [..J f e 4n 

We now turn to the v-cancellation properties of the mapping cones Cf of maps 
f :  S 4n-z _, $2,,. 

We saw in the last section that the genus of C / c a n  be characterised algebrai- 

cally without any assumption on the order of  f E z4~_¿ ($2"). The cancellation 

behaviour of Cf on the other hand depends vitally on whether or not this order is 

finite. 

Recall that the order o f f E  7r4,-1 (S 2n) is finite if and only i f f  is a suspension 

element. According to the results of  [M], [CW] and [Z], the genus of  C¢ is then 

characterised by non-cancellation phenomena as well as by an algebraic condition. 

THEOREM 4.1. Givenf, g : S m - l ~ S "  o f f i n i t eorder in~rm_ l (S ' ) (m>n> l), 

the following statements are equivalent: 

(i) C/ and Cg are of  the same genus. 
(ii) C f  v gn v S m  = Cg v Sn  v S m . 

(iii) Cf v B ~- Cg v B for some suitable bouquet of  spheres B. 

If, additionally, f is a suspension element, then these are equivalent to: 

(iv) For some integer K, V f=l Cf = VkK=l Cg. • 

Since the wedge of mapping cones is the mapping cone of the wedge of the at- 

taching maps, our investigation of the cancellation properties reduces to the inves- 

tigation of  our fundamental diagram 

V S 4n-I f ) V S 2n 

V S 4n-1 ' V S 2~ 
g 

We generalise from maps S 4n-1 ~ S 2n to maps V S  4n- I  ~ V S  2n and give an al- 

gebraic account of  the homotopy classes of  maps between the mapping cones of  

such functions, beginning with some notational conventions. 

NOTATION. Denote by inj the j- th canonical inclusion in the co-product Xj - ,  

VX,  and by qi: VX,  -~ Xi the map which collapses the wedge onto the i-th 
summand. 
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It follows from general principles that [VX,, Y] -= I-[ [X,, Y], so that we need 

only determine the structure and properties of 7rt(VS m) := [S~,VSm]. The 

Hilton-Milnor Theorem describes the structure of this homotopy group. 

THEOREM 4.2 (Hilton-Milnor Theorem) [GWW]. As  abelian group 

K 
7Fk(S m) ~-~ @ 7rk(S m) (~ @ 7rk(S my) 

i=1 j E N  

where [ m i I J E N } is a non-decreasing sequence o f  natural numbers o f  the form 

(s + 1)m - s with s E N\{0].  

I f  mj = (s + l)m - s, then the factor rrk(smo is imbedded by the induced 

morphism 

Wj(tl . . . . .  tK)#: Trk(S mj) -~ 3r k S m 

where wj (q , .  . . ,  tK) is a suitable (s + 1 )-fold Whitehead product of  the elements 

Lj : =  [inj] E 7rm(V Sm). The other embeddings are the morphisms 

( in , )o  : 7rk ( S m) ~ 7rk ( vgrn). 

Of particular interest to us are the next two corollaries. 

C O R O L L A R Y  4 . 3 .  

so that as abelian group 

I f  k < 2m- -  1 then 

~r, Vsm ----@~k(Sm), 
i=1 i=1 

[ ~[Sm'~[S~I-~Z~×x'~=~ ~=1 a • 

COROLLARY 4.4. 

7r2m_ 1 S m -~ @ 7r2m-l(S m) (~ @ ~r2m-l(S2m-l), 
i=1 i=1 i=1 

where the summands 7rzm-i (S 2m-t) are embedded by composition with the 

Whitehead products [ ~i, 9] ( i < j ) .  The other inclusions are ( inh)o : ~r2m-i ( S m) --" 

7r2m_l ( V L l  Sm). • 

We may thus write each c~ E 7r4._l(Vf=lS 2") as 
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K 

h=l l<_i<j~K 

where qh * a = ahh~h + ~hh = inh * (ahh~ + ~h). 

We next extend the notation of Section 1, replacing the torsion component of  

a by the suspension Ya and the torsion-free part by the K x K integral quadratic 

form H(et)  whose matrix (x o) is given by 

xii ~ -  H ( q i  * or), 

Xij : Xji : aij  if i < j .  

That  is, the coefficients are the Hi l ton-Hopf  invariants of  a.  Note that since 

f ahh if n = 1, 2 or 4, 

H ( q h  ° °t) = ~[ 2ahh otherwise, 

ahh and H ( q h  o a)  determine each other uniquely. 

We call _/-/(o~) the H i l t o n - H o p f  quadratic f o r m  ofoL. If K = 1, then this is equiv- 

alent to the classical Hopf  invariant. We use underlining in our notation to empha- 

sise that in the general case we are dealing with "matrices" (over a suitable group). 

If n ~ 1,2,4, then the suspension map restricts to an isomorphism of the torsion 

component of 71"4n_ 1 ( M S  2n) onto 7r4n ( V S  2n+l ), SO that ~'(~) and E~ determine 

each other. If, on the other hand, n = 1, 2, or 4, then Ea together with _H(a) de- 

termine ~'(c~) and _H(o~) uniquely, for the suspension restricts to a monomorphism 

of the torsion component of 7ran_l ( V S2n) into 7r4n ( V S 2~+1 ), even though it is no 

longer an isomorphism. Thus Y~ determines ~-(c~) in the presence of _/-/(o0. (The 

converse is obvious.) We regard Eoz as a column "K-vector" whose k-th entry is 

~kk = ink ° ~k. 

We now turn to determining _H(~ o f )  and Z(~ o f )  for f :  S 4n-I --, V S  2~ and 

: V S  2" --, V S  2~, beginning with an algebraic description of  the structure of  

[ v s m , v s  m] (m > 1). Because of the central r61e they play, we summarise the 

properties of the inclsuions inj : S m ~ V S m and the collapsing maps q~ : V S m --, S m. 

LEMMA 4.5. Denot ing  the Kronecker  s y m b o l  by 6ij, 

(i) qi ° in1 = 6ij idsm : S m ~ S m. 

(ii) in i o qj : V S m ~ V S m is a non-zero idempotent  which is non-trivial i f  K > 1. 

In fact ,  these maps  induce a splitting o f  the identi ty  map  o f  7rr( V S m) into a 

sum o f  idempotents:  

id = Z ( i n k o  qk)#: 7rr( V sm)  --* rCr( V sm)  • 
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(iii) The  f u n c t i o n  _A : [ V S m, V S m ] __.¢ M (K; Z) m a p p i n g  ~o to the K x K integral 

matr ix  A_ ( ~o), whose  ( i , j ) - t h  coef f ic ient  is the degree  o f  ¢ o := qi o ~ o inj, is 

a natural  i s o m o r p h i s m  o f  rings. • 

COROttARY 4.6. The  se l f -map  ~o : V S m - ,  V S m is 

(i) a h o m o t o p y  equ iva lence  i f  a n d  only  i f  det(_A(~o)) = +1 a n d  

(ii) a p -equ iva lence  i f  a n d  only  i f  det(A (~o)) is c o p r i m e  to p.  • 

A final corollary provides the model for many later computations. 

COROLLARY 4.7. Given  ~ : V S '~ --" V S m, ~ ° inj = Z~=] deg(~oij)ini. 

PROOf. It follows from Lemma 4.5 that ~o o inj = (~/~=~ (ini o qi)) ° ~ ° inj. By 

the Hilton-Milnor Theorem, composition is left-additive in this range, so that 

~o o inj = ZI~=l ini o q~ o ~o o inj. By definition qi o ~ o inj = ~o,j and composition is 

right-additive. Hence 

K K 

~ o inj = ~] ini o ~oij = ~aa deg(~oo)/ni. • 
i = 1  i = l  

LEMMA 4.8. Given f :  S 4n- I  - ,  V S  2n a n d  ¢ : V S  2" ~ V S  2", 

_H (~o o f )  = d ( ¢ ) H  ( f ) (  d ( ¢)) ' ,  

Z(~p o f )  = _A(~o)12f. 

PROOF. Computations in the style of Corollary 4.7 establish the result. We 

spare the reader the debauch of indices. • 

The corresponding computations for g o ~b are much simpler, since composition 

is always right-additive. 

LEMMA 4.9. Given  ~/ : V S 2n -~ V S 2n a n d  g:  S 4n- I  --~ V S 2n, 

_H(g ,, ~b) = deg(~)_H(g), 

IS(g ,, ~b) = deg(~)Xg. • 

The last two results generalise Theorem 1.5. The next proposition summarises 

them in a form convenient for calculations. 

PROPOSITION 4.10. The  m a p s  ~ of,  g o ~b : S 4"-I ~ V S 2" are h o m o t o p i c  i f  a n d  

only  i f  

deg(~b)H(g) = _A (~o)/-/(f)(A(~o))' 
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and 

deg(~)Eg = A (~o)I]f • 

We now return to the task of algebraically characterising our fundamental  

diagram 

V S 4n-1 f ' V S 2n 

'1 1 
V S 4n-I ) V S 2n 

g 

The  ho r i zon ta l  m a p s  are classif ied by [ V $4"-1,  V s2n ] _~ ( ~ r 4  n -  1 ( V s2n)  with 

as many direct summands as there are (4n - 1)-spheres in the bouquet V S  4"-1. 

Thus we have 

[ V s 4 . - , , V s  . . . . .  

where a i := a o ini E "/l'4n-- 1 ( V S  2n) (i = 1 . . . . .  g ) ,  and we can also write 

K 
Ot~- ZOt k. 

k=l 

Furthermore,  given ~b : V S  4n-1 ~ V S  4n-l, we use Lemma 4.5 and Corollary 4.7 

to find that 

K 
(or o ~)k  = ~_j deg(~ik)oti .  

i=1 

So, writing _V(o0 for (o~ 1 . . . . .  o~K), and with _A(ff) defined as above, we have es- 

tablished the following proposition. 

PROPOSITION 4.11. Given ~:  V S  4n-I ~ V S  4n-I ande~ E [ v s a n - l , v a 2 n ] ,  

_V(go ~b) = V(g)._A(~b). • 

We can represent each o~ E [VjJ=IS4n-I,VK=IS2n ] as a pair (_H(o~),Z(o~)), 

where _H(a) is the K x JK integral matrix given by juxtaposing the J symmetric 

integral matrices _H(o~Q(j = 1 . . . . .  J )  and r.(o~); the suspension of  c~ can be 

thought of  as a K x J "matrix" over 7r4~ (S 2"+~ ). Thus the (i, (k - 1)K + j)- th  co- 

efficient of  _H(a) is the ( i , j ) - th coefficient of  _/_/(~k) and the i-th column of r~(c~) 

is the suspension of a i. In fact the torsion component  ~'(a) of  o~ and E(o~) deter- 

mine each other: we apply our earlier argument column by column. 

We extend the matrix notation to this new situation, using the Kronecker prod- 

uct of  matrices. 
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DEFINITION. Given an I x J matrix A = (aij) and a K x L matrix B = (bkl), 

their Kronecker product A ® B is the matrix 

Jai l  n at2B . . .  alsB] 
a21B a22 B ...... a2jB 

~.atlB at2B . . .  auBJ  

In other words A ® B has a~jbkt as the (k , l ) - th  coefficient in the ( i , j )- th block. 

COROLLARY 4.12. Given @ : V S  4n-1 ~ V S  4 n - l ,  *, : V S  2n ~ V S  2n and ol E 
[ v s 4 n - l , V S 2 n ] ,  

_/4(,,. ~ °  4) ---- _A(*,)_H(~)(_A(¢) ® _A(*,)'), 

r~(*, o s o  ~b) = A_ (~o)~(~)d(¢) .  • 

We can now prove our Factorisation Theorem (Theorem D of the introduction). 

THEOREM 4.13 (Factorisation Theorem). Suppose f~,gi:S 4"-1 --' S 2" (i = 

1 . . . . .  K) are given and that the Hopfinvariants H(f i )  and H(g i) are non-zero if  
and only if  i <_ L and j <_ M. Then 

K K 
V Cfi, is homotopy equivlaent to V Cgj 

j= l  k=l 

i f  and only i f  
(i) L = M ,  

(ii) Cf~ is homotopy equivalent to Cgo, ) for some permutation a o f  [ 1 . . . . .  L}, 
(iii) CfL+, v . . .  v Cf~ is homotopy equivalent to CgL+ 1 v" "- v Cg K. 

PROOF. Clearly, only the "only if" part requires proof. So suppose that 

K K 

V Cf~= V Cgj • 
j =  1 k =  1 

Definingf, g : V S  4"-1 ~ MS z~ b y f  := V~=lJ~ and g := Vf=lgi, we have 

_H(g) (_A(~,) ® !K) = A(*,)_H(f) (1K ® A(*,) ') 

and 

~:g_A (~) = _A (*,)r.f, 

with det_A(~b),det A(*,) = +1. We see t h a t f f  = in, of~, so that _H(ff) has at most 

one non-zero entry, H ( f / )  in the i-th position on the main diagonal. Thus the 
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rank o f  H ( f )  is precisely L,  the number  o f ~ ' s  whose H o p f  invariant is non-zero.  

O f  course  _H(g) has a similar  fo rm and its rank  is M.  Since bo th  _A (~b) and _A (~o) 

are invertible,  it fol lows that  _H(f )  and  H ( g )  have the same rank,  i.e. L = M,  

proving  (i). 

C o m p a r i n g  the k-th block o f  each o f  the matrices,  we see tha t  

e- 
deg( t~ lk )H(g l )  

0 

= H ( f k )  

0 °°. 

deg( ~brk)H(gK) 

deg(~P~k) 2 . . .  

" ° .  

deg(~orx)deg(~p~x) . . .  

deg(~olk)deg(¢xk) 

deg ( ~PKk ) 2 

• "" d e g ( ~ l x )  

• . .  deg(~/~K) 

[ deg (~ l l )  

deg ( SoK 1 ) 

rgX ~ deg(~Kl)  

Choose  k _< L. Then  H ( f k )  4: O. Since _A(~o) is invertible there is a o(k)  with 

deg(~oo~k)~) 4: 0. Then deg(~bo~k)k),H(g~(k)) 4: O, since deg(~bo(k)k)H(go(~)) = 

deg(~po(k)k)2H(fk) 4: O. 

C o m p a r i n g  the mat r ix  coeff ic ients  o f f  the pr incipal  d iagonal ,  we see tha t  

H(fk)deg(~oo(k)k)deg(~sk) = 0 whenever  s 4: o (k ) .  Thus  deg(~oo(k)k) is the only 

non-zero entry in the k-th column o fA(~ , ) .  Hence o:  {1 . . . . .  L ] ~ {1 . . . . .  L} must 

be injective, since _A(¢) has rank K. 

C o m p a r i n g  the a ( k ) - t h  row of  _H(g o Xb) with that  o f / - / ( ¢  o f )  we see that  

deg(~bo~k)s)H(go(k)) = H(fs)deg(~olk)s)  z f rom which it follows that  deg(~bo(~)s) = 

0 unless s = k. Hence  deg(tk(otk)k) is the only non-zero  entry in the o ( k ) - t h  row 

o f  _A(ff) and deg(~po(k)k) is the only non-zero  entry in the o ( k ) - t h  co lumn of  

_A (~) .  Moreove r  both  have absolute  value 1, since _A (if) and _A (~) are invertible. 

Thus H(go(~)) = + H ( f k ) .  
For  the suspensions,  we have the "ma t r ix"  equat ion  r.gA (~b) = _A (~)r.f,  or 
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Compar ing  the ( o ( k ) ,  k ) - th  entries, we see that  deg(~bo~k)k)~go(k) = deg(~Oo(k)~) Eft ,  

that  is X;g~k) = +Efk.  Thus,  by Corol lary  1.6, Cf~ and Cgo~,~ are h o m o t o p y  equiv- 

alent,  proving (ii). 

Finally, it follows f rom the above  considerat ions that  both  

~deg(~b(L+l)(t_+l)) . . .  deg(~b(L+x)~¢) 

and 

deg(~bx(L,-l)) - . -  deg(~b~r) 

deg(~P(L+l)4L+l)) • • • deg(~o(L+bK) 

deg(~ox(L+b) - - -  deg(~omO 

are invertible. Thus defining f '  :--= fL+l V . . .  V f r ,  g '  := gL+l V ' ' '  V gK and choos- 

ing if '  and ~o' with the above matrices as _A ( i f ' )  and _A (¢ ' )  respectively, we see that  

~ ' o f '  = g '  o ¢ '  so that  

cj +, v . . . v  GK-' :  C,-,-- v . . . v  • 

Theorems  B and C f rom the In t roduc t ion  are special cases of  this theorem.  

COROLLARY 4.14 (Theorem B). I f  f ,  g ' . S  4n-1 ~ S zn are both o f  infinite order in 

7r4n-1 (S2n), then 

C f  v S 2n v S an = Cg v S 2n v S 4n i f  and only i f  Cy = Cg. • 

COROLLARY 4.15 (Theorem C). I f  f ,  g : S 4n-1 ~ S 2~ are both o f  infinite order in 

71"4n_ 1 ( s 2 n ) ,  then 

K K 

V Cy -- V Cg i f  and only i f  Cf = Cg. • 
i=1 i=1 
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